About Us

about_us_sm
Our mission: to help people living with Parkinson’s to live well today.

News

Support Us

UAB studies find deep-brain stimulation changes rhythms to treat Parkinson’s disease and tremor

By Greg Williams, www.uab.edu

Deep-brain stimulation (DBS) may stop uncontrollable shaking in patients with Parkinson’s disease and essential tremor by imposing its own rhythm on the brain, according to two studies published recently byUniversity of Alabama at Birmingham researchers in the journal Movement Disorders. An article addressing brain stimulation for essential tremor was published online Aug. 28, 2012; a related article on Parkinson’s disease was released May 30.

DBS uses an electrode implanted beneath the skin to deliver electrical pulses into the brain more than 100 times per second. Although this technology was approved by the Food and Drug Administration more than 15 years ago, it remains unclear how it reduces tremor and other symptoms of movement disorders.

With the help of electroencephalography or EEG — electrodes placed on the scalp — study authors used new techniques to suppress the electrical signal associated with the DBS electrode. That enabled the first clear, non-invasive EEG measurements of the underlying brain response during clinically effective, high-frequency brain stimulation in humans.

The results show that nerves in the cerebral cortex, the outer layer of the brain, fire with rapid and precise timing in response to individual stimulus pulses. This suggests that DBS may synchronize the firing of nerve cells and break the abnormal rhythms associated with involuntary movements in Parkinson’s disease and essential tremor.

The newly identified rhythm was captured during effective DBS treatment, so it could represent a new physiological measure of the stimulation dose, say the authors. If validated, such a yardstick could help to guide the fine-tuning of DBS stimulator settings in patients for more lasting relief, fewer side effects and less-frequent battery-replacement surgeries.

“Though it’s clear that more work is needed to better understand these initial observations, we’re very excited by our findings because they may provide a biological marker for improvement in the symptoms of these patients,” says Harrison Walker, M.D., assistant professor in the UAB Department of Neurology’s Division of Movement Disorders and lead author of the study. Read the rest of the article here.

This entry was posted in Blog, News. Bookmark the permalink.
[SINGLE POST]